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Summary The Mechanics and Thermodynamics of chemically stable, continuous 

bodies can be built up from the intuitive notion, that a theory for the computational 

simulation of the development in time of observable phenomena needs at least one 

quantity, that remains constant in time, in order to have a check on the validity of the 

theory for all admissible initial data. The central role, that can be given to the principle 

of conservation of energy, is demonstrated, both for the Mechanics of rigid bodies as 

well as for the Mechanics and Thermodynamics of gases and deformable bodies. 
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Introduction 

In the Natural Sciences we have a useful theory, if it enables us to simulate the 

development in time of observable phenomena by computation, be it with a limited, 

but known degree of accuracy. And simulation is something else than prediction, as 

we know from Chaos Theory. 

In the Galilëian thermo-mechanics the mathematical description of phenomena uses 

Euclidean Geometry with time as a parameter, that varies continuously over the range 

of real numbers. 

A concise formulation of the theory is obtained with the aid of Linear Algebra, 

Vector- and Tensorcalculus. The computations have of course to be carried out with 

vector components and tensor components in a suitably chosen coordinate system.  

For computational purposes the mathematical modelling must ultimately result in a 

finite dimensional system of equations. 

 For rigid bodies these equations are ordinary, second order differential equations, to 

be replenished by ordinary, first order differential equations for models of rigid 

bodies, for which the orientation of the so-called principal axes has to be traced. 

Proper initial condities are the initial position and orientation, as well as the initial 

velocities of the rigid bodies. 

For deformable bodies we derive for so-called continuum models systems of partial 

differential equations for the field quantities  of these models. Second order equations 

for the displacements and equations for the velocities, that determine the heatflow, 

have to be replenished  by the constitutive equations for the so-called state variables. 

Generally these equations can only be given in the form of rate equations, since the 

irreversibility of the processes precludes a unique relation between the state at an 

arbitrary instant of time and the initial state. Initial conditions are initial displacement 

and velocity fields, and a full specification of the initial fields of state variables. 

Furthermore the proper boundary conditions have to be supplied.  
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In the case of a deformable body a straightforward discretization procedure consists of 

a splitting up the body into an assemblage of small finite elements, interconnected in 

nodal points such that the continuity of the displacement and velocity fields at the 

common boundaries is at all times ensured. The fields of state variables are 

represented by finite dimensional representations of these variables in what can be 

called sampling (or integration) points inside the finite elements. The rate equations 

for the elements of these vectors of state quantities are adopted directly from the 

continuum model for each finite element. The equations for the nodal quantities in the 

finite element model are derived by applying the energy equation in the same way as it 

can be applied to derive the equations of continuum thermodynamics, by what has 

been called the principles of virtual power and of virtual heat [1]. 

In the case of large inelastic deformations of a body, and for problems of flow of gases 

and liquids, the finite element method in terms of material elements is not applicable 

and the space instead of the body has to be divided into finite elements. For the details 

we refer to the specialized literature.  
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Theory for one point mass 

It is always possible to position the observer such, that 

at any time holds 

     d
dt

2

2 r r 0   or d
dt r r r   .0       (1)    

According to linear algebra a scalar product of r  

and r , that is equal to zero for all r , 

                 , r r 0  ,r          

implies r 0 . 

Since the theory must hold for an arbitrary choice of 

the initial time and of the initial velocity r0 , the theory 

is couched in the statement that the inner product of 

the velocity vector is constant in time: 
                 r r  constant.                                                                                                      (2) 

 

From 

               
d

dt
(  )r r  0   r  

we have again the result 

                  , r r 0     .r r 0                                                                (3)                                                                                         

However the theory has no physical content and is for the observer only descriptive. 
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Theory for two point masses 

Suppose an observer can be positioned such that for two non-interacting point masses 

A and B holds for all times 

                 r rA A   constant and  r rB B   constant, 

then the observer concludes: 

                r 0A   and r 0B  . 

The observer is positioned in a so-called inertial system. Inertial systems are 

determined but for a constant rotation and a constant velocity with respect to each 
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other (Galileï). Note that we postulate that the initial velocities of all point masses in 

an inertial system are arbitrary, independent of each other. 

The theory becomes more interesting if we suppose the two point masses to be 

interacting. Again we shall derive the theory from the hypothesis that there is one 

scalar quantity E , that remains constant in time. In this quantity the inner products of 

the velocity vectors of the masses A and B will be represented, but intuitively we feel 

that these inner products will at least have to be multiplied by weight factors  mA  and 

mB . It is to be expected that that the mutual interaction will be weaker the farther 

away from each other these point masses are. We therefore propose that the mutual 

interaction will be inversely proportional to the distance and proportional to each of 

the weight factors. Hence we add to the sum of the inner product terms in E  a term 

with the product of the weight factors in the numerator and the relative distance in the 

denominator. Since this term must have the same physical dimension as the inner 

product terms, the extra term has to be multiplied by a physical constant of the proper 

physical dimension. This constant we shall denote by G : 
 

          

 
E m m

Gm m
A A A B B B

A B

A B A B

  

 

1

2

1

2 1
2

(   ) (   )

( ) ( )

r r r r

r r r r

 


                               (4) 

 

E = constant in time for arbitrary initial velocities implies 

            ,   , E m mA A AB A B B BA B        r f r r f r 0    , r rA B  ,                                       

or 

           mA A AB
r f     and         mB B BA

r f ,                                                           (5) 

where 

            

 
f f

r r

r r r r
AB BA

A B A B

A B A B

Gm m
   



 

( )

( ) ( )
3

2

 .                                                   (6) 

The vectors fAB  and fBA  are what Newton called forces, equal to mass multiplied 

by acceleration according to (5), and determined by the law of gravity with (6). 

The equations (5) and (6) are in accordance with the observation that everywhere on 

earth the acceleration due to gravity is the same for all objects (apart from air 

resistance, etc.). 

We have introduced three physical dimensions. The length of the shortest distance 

between two points is by a multiplying factor expressed in terms of meters, based 

upon a standard m. The time interval between two observations is expressed in terms 

of seconds, based upon a standard s. Finally the mass of an object is expressed in 

terms of kilograms, the multiplying factor based upon a standard kg. A platinum bar, 

stored at constant temperature, may serve as the standard m, a weight, stored in an 

non-aggressive environment represents the standard kg, while the standard s is derived 

from observable phenomena, that repeat themselves regularly in time. Initially the 

standard s was derived from the motion of the earth with respect to the sun. Now the 

standards m and s are connected with atomic phenomena, because they can be defined 

with much greater precision that way. 

Cavendish devised an experiment for the measurement of the force of mutual 

attraction of two masses (1797-1798). This experiment was repeated with increasing 

accuracy by Boys (1889-1895) and by Hey and Chrzanowski (1942). These 

experiments gave for G a value of ( . . )6 673 0 003 10 11 1 3 2   kg m s . 
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As in the next paragraph will be explained the motion of the celestial bodies in our 

solar system can be simulated with great accuracy by extending the theory for two 

point masses, set forth above, to a theory for n point masses. For the determination of 

the motions of their so-called centres of gravity the celestial bodies, with their finite 

dimensions, appear to be representable by masses, concentrated in mathematical 

points. 
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Rigid bodies of finite dimensions 

In the continuum theory the mass of bodies of finite dimensions is  taken into 

account by a continuous distribution, represented by a massdensity    (the physical 

dimension is mass per unit volume). In general this massdensity will be a function of 

the place in the body, i.e. a function of the position vector from one and for all places 

the same material point of the body. These position vectors we shall denote by r and 

their common origin may be determined such that it will be called the centre of 

gravity of the body, for which holds 

                 
B

 r
 dV 0 .                                                                                         (7) 

A vector r , rigidly connected to the body, has a constant length if the body is not 

deformable, but its orientation with respect to the inertial system of the observer will 

be changing with the motion of the body. If this vector at an initial time is denoted by 

r0

 , the vector r  at a later time can be expressed in terms of r0

  by a linear, so-called 

orthogonal transformation R.  

       r Rr
  0 , r r r R Rr r r R R RR I           0 0 0 0( )T T T .                        (8) 

The vector r  changes with time in accordance with the time dependent 

transformation R , the transpose of which is indicated by R
T . Since the product of R  

with its transpose equals the unit transformation I , the time derivative of this product 

equals zero and consequently we have 

               ,RR RR
T T           T .                                                               (9) 

Through this skew symmetric transformation   the time derivative of the vector 

r can be expressed in terms of the axial vector  , representing the angular velocity 

about an axis of rotation in rad/s: 

                r Rr RR Rr r r        0 0

T   .                                                       (10) 

If we denote the position vector of the centre of gravity of the body in the inertial 

system by r c , then the position vector, the velocity vector and the acceleration vector 

of a material point of the body are given by: 

                                    

r r r

r r r

r r r r

 

  

     





 

c

c

c

,

  ,

   ( ).



  

                                       (11)                                                     

The third term in the acceleration is called the centripetal acceleration. Since in this 

term also appears the angular velocity  , together with the velocity, that in the 

derivation of the equations of motion is to be treated as an arbitrarily to be chosen 

initial velocity, we shall henceforth express the arbitrarily to be chosen velocity in 

terms of the so-called virtual velocity of the centre of gravity, r c , and of the 

virtual angular velocity    about an axis through the centre of gravity. Thus for 
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d

dt
B

 1
2   r r dV

B

    , r r dV  r   

we write                                              

                     
d

dt
B

1
2   r r dV   

 
B

d

dt
( r c   

r ) ,(  r
c    r )dV   ,r

c          (12)              

 
Making use of the properties of the scalar product,  , , of the vector product,  , and 

of the tensor product,  , and taking into account (7), we may write (12) in the  

more conveniently arranged form: 

       , r r
c c

d

dt
dV

B

 ,
d

dt
  ( )r r I r r

  

  
B

dV     

     , r r
c

B

cm  , ( ) .
d

dt
J                                                                               (13) 

 

Here I  is the unit tensor. The so-called inertia tensor J  is a positive definite tensor 

and it can be expressed in terms of its three principal eigenvalues, J J J1 2 3, , , and in 

the three corresponding orthonormal eigenvectors, p p p1 2 3, ,  . 

                  J p p 


J i
i

i i
1

3

( ).                                                                              (14) 

 The three principal eigenvalues are the so-called principal moments of inertia. Axes 

along the eigenvectors are denoted as the principal axes of inertia. 

 In case a body possesses axial symmetry  one of the principal axes of inertia is the 

axis of symmetry, any axis perpendicular to this axis of symmetry is a principal axis 

and the other two principal moments of inertia are equal in value. 

For a body with spherical symmetry all axes through the centre of gravity are principal 

axes and the three principal moments of inertia are equal in value. 

If the body has an angular velocity   with respect to the inertial system, then the 

inertia tensor is time dependent, except in the case of a body with axial symmetry and 

an axis of rotation along the axis of symmetry, and except in the case of a body with 

spherical symmetry. 

When we assume that in the interaction between a mass point A and a body B of finite 

dimensions the contributions of infinitesimal masses dm  of the body B have the same 

form as the contribution of the mass point B in (4), then the second term in (4) is to be 

replaced by 

               

 


    
Gm

dm
A

A B

c

A B

c
B ( ) ( )r r r r r r

1
2

                                  (15)  .                                                       

If the diameter of body B is small compared to the distance between A and B, 

              r r r r r r r     ( ) ( ) ( ),A B

c

A B

c

A B

c  

then all mass of the body B may be concentrated in the centre of gravity without great 

loss of accuracy. Moreover in case of a body with spherical symmetry this may be 

done without any loss of accuracy as it will be shown in the following. 
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Using the notation 

                  r rA B

c

A B

c         ( ) ( ) , ( ) ,r r r r r r r r 
1

2 1
2  

we have in spherical coordinates r , ,   

                 ( ) ( ) cos .r r r r r rA B

c

A B

c r r rr           2 2 2   

The expression for dm  in the integral (15), 

                         dm r dr d d     2 sin , 

 contains the derivative with respect to  of the denominator. Consequently we have    

 

              
 


 



 

 
Gm

r dr d d

r r rr
A

R
   



 2

2 2
1

2
0

2

00 2

sin

cos 
 

                                                                                 


Gm

r
r r r r r dr

A

R


 2

0

  ( ) .  

 For r r   the integrand is the mass of a spherical shell of thickness 

dr dm r dr  , .4 2 Hence without any loss of accuracy the mass of body B may be 

concentrated in its centre of gravity. 

     

 


   

 
 

Gm
dm Gm m

r
A

A B

c

A B

c
B

A B

( ) ( )r r r r r r
1

2 
                             (16)   

Since for bodies with spherical symmetry the interaction solely depends on the 

distances of their centres of gravity, the angular velocities about axes through these 

centres of gravity are independent of each other and may be considered for each body 

seperately. If for such bodies the moment of inertia is denoted by J   

( )J J J J1 2 3   , then for each body holds 

            , J 0     ,0   0 .                                                           (17) 

If there is no spherical symmetry, but the ensuing perturbation of the interaction with 

other bodies may be neglected, then we have instead of (17) 

                        , ( ) ( )  ( ) .
d

dt

d

dt
J J J J 00                            (18) 

This is a very complex equation for   since J  depends on the orientation of the 

principal axes of inertia. The tensor J  is obtained from its value in the initial 

orientation of the body by the transformation 

            J RJ R 0

T .                                                                                              (19) 

If we now transform the angular velocity vector from a vector in the inertial system to 

a vector in a coordinate system, rigidly connected to the body,    R
T , then we 

obtain from equation (18) the famous Euler equations: 

     RJ R R RJ R R R J J 00 0 0 0

T Td

dt

d

dt
( ) ( )  ( )                                      

or 

            J J 00 0
 ( ) ,        .J 00                                                                (20) 

The earth has no perfect spherical symmetry. The third principal moment of inertia is 

not exactly equal to the other two principal moments, but is slightly larger. If we take 

the third principal axis of inertia as one of the coordinate axes, rigidly connected to 

the earth, then we have the following equations for the components of the vector of 

angular velocity : 
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1 1 3 1 2 3

1 2 1 3 1 3

3 3

( ) 0,

( ) 0.

0.

J J J

J J J

J

  

  



  

  

  

  



                                                                         (21) 

In addition to  3

   constant these equations permit a periodic solution for 1

  and 

 2

  with a frequency of  
( )J J

J
3 1

1 3

  . This wobble of the earth is actually very well 

observed, giving rise to what is called the variation of latitude. The amplitude of the 

motion is but small. 

The motion of the celestial bodies in our solar system can already with great accuracy 

be simulated by computation, neglecting the deviations from spherical symmetry. For 

our solar system the theory for n celestial bodies is then summarized by 

 
 

E m J
Gm m

i i i i
i

n
i j

i j i j
j

n

i j

n

  

 


 

 (   ) ( )

( ) ( )

1
2

1
2

1
1

21

r r

r r r r
i i 



  constant.        (22) 
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Motion and deformation of chemically stable, material bodies 

In (22) the partial derivatives of the so-called gravitational potential with respect to 

the position vectors lead to the forces by which the bodies interact in their motion. We 

observe that bodies can also strongly mutually influence their motion by surface 

contact. A theory, that supplies contact forces, is acquired in an indirect way, since the 

contact forces depend on the material properties. While the gravitational forces may 

be given in terms of a vectorfield of forces per unit mass, f ,  the contact forces are 

defined as stress vectors per unit surface area, t.  Considering one body we write 

analogously to (5) 

                     t r f r r r,  ( ),  .  


dA dV
BB

0                                                    (23) 

For the description of the motion of rigid bodies we use (11) and (13): 

                        t r,  


c

B

   
r dA  

                           f r c
B

 ( ) ,      
r r  rc     r 0  ,r

c   ,  

        or 

                        F r m c ,                             M J
d

dt
( ),  

F t f   dA dV
BB




,       M r t r f    

 dA dV
BB




.                                         (24)  

The inertia tensor J depends according to (19) on the orthogonal transformation 

R, for which we have the differential equation of the first order  

               R R  , 

in addition to the first order differential equation for . When the external force F  

and the external moment M  are supplied as functions of time the motion of the body 

can be simulated by integration of the equations of motion starting at a time, for 

which the initial conditions are known. Through the non-linearity in the equations for 

the components of the moment there arise a number of remarkable phenomena, like 

gyroscopic effects and the wobble of the earth, that was touched upon in the previous 

paragraph. 
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For deformable bodies in the first place conservation of mass must be ensured. The 

position vector r  of a so-called material point of the body is to be considered as a 

time dependent vectorfield,  subjected only to conditions of continuity and piecewize 

differentiability as long as the cohesion of the material of the body is being 

maintained. Then the law of conservation of mass is expressed by 

             
d

dt
dV div dV

BB

     ( ) ,r 0 or   .  divr 0                                       (25) 

Though the value of E in (22) being constant in time, as a basis for the theory of 

motion for the celestial bodies in our solar system, could be designated as the law of 

conservation of energy, for the existence of a contribution to the gravitational 

potential there always must be two bodies. Such a contribution does not have an 

identifiable carrier, this in contrast to the contributions to the so-called kinetic 

energy. The contributions to the kinetic energy are expressed in terms of the 

velocities of the individual bodies. In the equation of motion (5), usually set forth as 

Newton’s law, 

                  m m ,    ,r f r r r f0  

the gravitational potential is hidden behind the force vector f .  

The scalar product  f r,   is designated as the work per unit of time, or as the power 

supplied by the external force f .  In the case of undeformable bodies the power 

supplied to a body is fully stored as kinetic energy  of this body. Also deformable 

bodies are subjected to the law of conservation of energy, which is then designated as 

the first law of thermodynamics. However for deformable bodies the energy stored 

by the body consists of the sum of the kinetic energy and the internal energy. 

With this internal energy as a function of the momentary state of the material of the 

body we define a model for this particular material. This implies that the first law of 

thermodynamics has physical content only in connection with a model of the 

momentary state and with the availability of equations, that determine changes of this 

state with time. 

In the continuum theory for the internal energy we introduce a scalar field e , that has 

the physical dimension of energy per unit mass ( m s2 2 ). The local value of e  has a 

physical significance only if it is multiplied with a small, but finite mass V.  Since 

the internal energy should also represent the kinetic energy of the temperature motion 

of the atoms, it is only defined for a conglomeration of a very large number of atoms. 

The more or less violent vibrations of the atoms about their equilibrium positions are 

at contact experienced by the observer as hot or cold. As a measure for hot and cold 

the notion of temperature is introduced. Temperature introduces a fourth physical 

dimension. In addition to length, measured in meters, mass, measured in kilograms, 

and time intervals, measured in seconds, we now have temperature, to be measured in 

degrees. The energy exchange without a net resultant force through the contact surface 

between bodies is represented by the product of the absolute temperature , non-

negative by definition, and an entropy velocity vector .h  Like the contact stress 

vector the contact temperature depends on the material properties and hence can only 

be defined in an indirect way. The temperature scale in degrees is derived from the 

properties of a so-called perfect gas, to be discussed further on. In the continuum 

theory for the motion of any body the law of conservation of energy is formulated as 

follows: 
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                           t r n h f r r,  ,  ( ),   .  
B B

dA e dV 0                                  (26) 

Here n  is the outward directed normal in the point of the surface under consideration. 

The velocities, r  and h , may be arbitrarily chosen initial velocities of the process, to 

be designated as r  and  .h  

Following Gibbs we consider the internal energy function to be a function of state, of 

which the value is, but for a constant, determined by the value of the so-called state 

variables of the model. Changes of state are reversible in the so-called state space. 

In state space the variable time is absent, because the state variables by definition 

define a state of equilibrium. The difference between values of state variables at two 

consecutive points of time is of course a consequence of a time dependent process, but 

this process can not be described in the state space. 

If the spatial gradients of the state variables are not too large, the small but finite mass 

element for which the local value of the internal energy as determined by the local 

values of the state variables is still physically meaningful, can be thought of as being 

embedded in the physical space. In this physical space, in which changes are 

generally irreversible, the rates of change of the state variables must be related to the 

mass velocities and the entropy velocities. We attribute to each material point of a 

body an internal energy as if we were dealing with a state of equilibrium, in which this 

internal energy is determined by the local values of the state variables of the model 

under consideration. We speak of the principle of local equilibrium [2]. In the 

admissibility of this description of the changes, that take place in the material of the 

body, lies the strength and the limitation of the continuum model of the material. 

 

6 

Navier-Stokes model for a gas 

In the continuum theory the model of a gas is usually formulated in terms of an 

internal energy, that depends solely on the temperature, i.e. on the temperature 

motions of the gas molecules. This corresponds with a function e  , that only depends 

on the local value of the mass density   and on the local value of the entropy per unit 

mass, s  : 

                             e e s ( , ) .                                                                               (27) 

Just as the mass density this local entropy may vary with the divergence of the 

velocity field, in this case of the entropy velocity field. But in contrast with the change 

in mass density in (25) as a consequence of the divergence of the mass velocity field, 

by the second law of thermodynamics the change in entropy is never smaller than 

the influx of entropy. In terms of the so-called Clausius-Duhem inequality, with the 

aid of a non-negative entropy production term  , the continuum formulation of the 

second law of thermodynamics reads as follows: 

                         s div h ,  0 .                                                                    (28) 

For the mathematical description of the deformation we consider the square of the 

length of a line element in a material point of the continuum, determined by the inner 

product of the infinitesimal vector dr  The expression for the time derivative of this 

inner product comprises a symmetric tensor: 

                       dl d d2  r r ,      
d

dt
dl d grad grad dT( ) (   ) .2  r r r r  

The tensor 
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                       D r r 1
2 (   )grad grad T                                                                 (29) 

is denoted as the rate of deformation tensor. In case of rigid translations and 

rotations of a body the length of any material line element is invariant and this tensor 

equals the zero tensor in all material points of the body. The local rate of change of 

volume, div tr ,r D  can be split off. Then we obtain the so-called deviator of the 

tensor D,  

                        D D rI
d div  1

3  .                                                                        (30) 

In order to transform the surface integral in (26) into a volume integral we introduce 

Cauchy’s theorem, expressing the stress vector t  at the surface as a contraction of a 

stress tensor T , defined in the interior of the body, with the outward normal n  at the 

surface point under consideration: 

                        t nT ,T T TI d tr1
3 .                                                              (31) 

In the Navier-Stokes model of a gas the stress tensor T  has a spherically symmetric 

component, determined by a state variable p , while the remaining components are a 

consequence of an irreversible process of exchange of  momentum, ,r  in the gas. 

Neighbouring layers in the continuum model exchange in the real gas molecules with 

different velocities without a net mass transport. This part of the stress tensor is 

denoted by T ir . 

Now the equation (26) for conservation of energy can be written as one volume 

integral by means of the divergence theorem. If we substitute the expressions for   

and s  from (25) and (28) , we obtain 

       

 

 

          




















     













  









  

       

 



nT r n h f r r

f r T r r h

T r T D h T1

,  ,  ( ),   

( ) ,   

 , ,  (

  









 
















B B

B

ir ird d

dA
e e

s
s dV

div
e

p div
e

s
div

e

s

tr div grad

2

1
3 2 ir irT grad dV  T r),  .0

      (32) 

For equation (32) to be satisfied for arbitray r  and h  the following equations must 

hold 

        ( ) ,f r T 0  div  

         p
e

 



2    ,    






e

s
  ,   T I T  p ir ,   T T

ir irT , 

                1
3 tr div gradir ird dT r T D h , ,  .                                                (33) 

The simplest positive definite expression for the energy dissipation  , that 

satisfies (33) for arbitrary r  and h , is given by 

                 1
3

22 3 2( )(  )  .div k
d d

r D D h h                                   (34) 

Here we have used the customary constants of viscosity   and  , as well as the heat 

conduction coefficient k . Often it is assumed that 2 3 0    gives the best 

description of the phenomenon of viscosity in a gas. 

If we require that the expressions (33) and (34) are identically equal to each other, 

then the Navier-Stokes model is complemented to a mathematical description, that 

enables us to simulate all kinds of phenomena of gas flow: 

      1
3

1
3 2 3tr divirT r ( ) ,  T Dird d 2 ,                                                         (35) 

        h  kgrad .                                                                                              (36) 



 

 

11 

The expression for the internal energy, corresponding to the gas law 

        p R   ,                                                                                                     (37) 

formulated with an initial mass density 0 , an initial temperature  0 , and an initial 

entropy s =0, is given by 

        e c s
cv

v




 


 















0
0

1exp ,   R
cv

.                                                     (38) 

As material constants appear in this expression the specific heat at constant volume, 

cv , and the so-called gas constant R , characteristic for the gas under consideration. 

Though the gas law (37) defines a family of so-called perfect gases, one for each 

value of R , any gas at low enough mass density approaches a perfect gas with a 

particular value of R . Hence the temperature scale is defined in terms of a 

gasthermometer with a gas appropriate for the temperature range to be considered (for 

instance helium with 3 2 2 12.08.10R m s K   for lower temperatures and nitrogen 

with 2 2 2 12.97.10R m s K   for higher temperatures). The absolute temperature is 

expressed in terms of degrees Kelvin, based upon the fixed temperature of the triple 

point of H O2 . The triple point is the temperature at which ice, water, and water vapor 

are all in equilibrium with one another. In the definition of the Kelvin scale the 

temperature assigned to the triple point is 27316.  K  exactly, corresponding on the 

Celcius scale to 0 01.  C . The Celcius scale is based upon a temperature difference of 

100 degrees between the steam point of water, 100 C , and the ice point, 0 C . On the 

Kelvin scale, defined by 





 27316.

( \ )

( \ )
,

p

p
K

triple

  

this temperature difference between the ice point, 2731502. K , and the steam point, 

373146.  K , is very nearly preserved. 
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Model for the deformation of solids with a natural reference state 

 

In contrast to the memory-free Navier-Stokes model for a gas, a model for the 

deformation of a solid must have a built-in memory in the form of so-called elasticity. 

Perfect elasticity may be defined as the capacity of the material under consideration to 

fully restore the initial geometry, if the values of the state variables that appear in the 

internal energy function are brought back to their initial values. A description, in 

which the material in state space can be characterized by an invariant function for the 

internal energy, takes the existence of a so-called natural reference state for granted. 

Then it is assumed, that for a finite, be it possibly very small neighbourhood of a 

material point of the continuum model, the geometrical configuration of the atoms in 

relation to each other differs from the configuration in the natural reference state by a 

linear transformation of line elements in that point: 

                       dr F ed .                                                                                     (39) 

In the case of permanent perfectly elastic behaviour  for each material point of the 

continuum model the position vector   and the initial position vector r0  are identical, 

  r0 . Then there exists an indestructible bond between the configuration of the 

atoms and the material points of the continuum. By the motion of the material points 

of the continuum not only the average mass motion is given, but for the elementary 
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particles of the elastic material holds, just as for the material points of the continuum, 

that neighbours remain neighbours.  

However perfectly elastic behaviour generally may only be considered as a good 

approximation for very small deformations. While for the motion of gas molecules it 

is immediately clear, that the place of these molecules in the continuum model bears 

no relation to the configuration of the material  points of the continuum, in a solid we 

need insight into the deformation process in order to see that also here neighbouring 

physical particles of the material generally do not remain neighbours. For instance in 

the case of crystalline materials (e.g. metals) slip processes caused by dislocation 

movements are responsible for the fact that continuously the individual atoms come 

under the influence of different atoms in the crystal lattice. However the internal 

energy of the continuum depends on changes in the mutual configuration of the 

physical particles with respect to the configuration in the natural reference state, 

independent of the fact whether this natural reference state in the material point under 

consideration is made up from the same particles as in the initial state. By (39) we 

express an experiment of thought, in which the atoms by a local deformation are 

reversibly restored to the configuration, corresponding to the configuration belonging 

to the initial values of the state variables in the internal energy function. 

The elastic deformation tensor, acting as state variable in the internal energy 

function, is defined as follows: 

           d d d d d der r       2 ( ), e eT e 1
2 ( ).F F I                               (40) 

The line element d , representing the local natural reference state in the continuum 

model, will for the material point under consideration generally change its length and 

orientation by inelastic deformation. The rate at which this happens can be 

characterized in the physical space by a tensor p : 

          d d d d d dp e e e p e e p   ( ) .        r F F r F F r L L r
1 1                        (41) 

The so-called velocity gradient tensor L  has been split into an elastic and an 

inelastic part. Also the deformation gradient tensor D  and the spin tensor   may be 

split into an elastic and an inelastic part: 

           D L Le e eT 1
2 ( ), D L Lp p pT 1

2 ( ),                                                 

            e e eT 1
2 ( ),L L  p p pT 1

2 ( ).L L                                                    (42) 

We have 

           D D D e p ,  . e eT e e F D F                                                                  (43) 

Again by the divergence theorem the law of conservation of energy (26) is written as a 

condition for an integral over an arbitrary volume: 

                       nT r n h f r r,  ,  ( ).   
B B

dA   









e e

s
s dVe

e    

                       f r T r , 
B

div 





e
e

e   
F TF

e 1 eT 1 , 





e

s
div









 h  

              



 

e

s
grad dV      T D h

p, ,  .0                                                     (44) 

 If we require this equation to be satisfied for arbitrary r and h , then we obtain the     

equations of motion,              

              ( ) ,f r T 0  div                                                                                (45) 
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as well as the so-called constitutive equations for the stress tensor and for the 

temperature together with an expression for the energy dissipation: 

                        1eTe
TFF

1




e
e ,       






e

s
,  

                    T D h, ,  .p grad                                                                    (46) 

The equations for D p and h  are, just as in the case of the Navier-Stokes model, 

obtained with the aid of an expression for the energy dissipation. In the first place we 

observe that the change of volume for a solid, that permits a thermodynamic 

description, according to experiments is a purely elastic phenomenon. As a 

consequence the dissipation term of the inelastic deformation is determined by the 

deviator of the stress tensor, because tr pD  0. Next we assume the inelastic rate of 

deformation to be determined by the energy dissipation as a function of the state 

variables, since without the introduction of new concepts there is no alternative. The 

inelastic rate of deformation tensor as the dual of the stress deviator can be defined, 

but for a scalar multiplying factor, by the derivative of the dissipation function with 

respect to the stress deviator. We put 

                T D h T h h
d p dgrad p k, ,  ( , , )  ,  

       D
T

p

d 



,          




  













T
T

d

d, ,

1

   p  0,  

          .h  kgrad                                                                                               (47) 

For an isotropic material the internal energy function and the dissipation function 

contain the invariants of the tensors  e  and T d as state variables. Together with the 

initial pressure and temperature, p0  and  0 , and with the customary material 

constants, the specific heat cv , the coefficient of cubic thermal expansion  ,  the 

bulk modulus C,  and the shear modulus G,  the internal energy function  for small 

elastic deformations  has the following form: 

      

 e s p 0 0 tr e  20 0

2 v v

C
s s

c c

 
 tr Ce  1

2 1

2

0












C

cv

 


 tr e

2

+ 

              Gtr ed ed    .                                                                                          (48) 

A wellknown, often applied isotropic dissipation function, that for n  passes into 

the Von Mises yield criterion with a yield stress  y , has the following form: 

                    











( )

( )

( )
.

3

2 2

tr d d

y

n

T T
                                                                 (49) 

Here the function  ( )  takes the temperature dependence of the energy dissipation 

into account. 

The description of  the material behaviour may be enhanced by the introduction of so-

called hidden or internal state variables. In [1] it is shown how a description of 

anisotropic strainhardening of an initially isotropc material can be obtained. 

In particular for large deformations, as well as for excessive strain gradients [3], one 

meets with the limitations of the continuum model. With the computing power, 

nowadays available, one tries to bridge the gap between insight into the slip processes 

on a microscale and the description in a continuum model. For crystalline materials 
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the deformation process is governed by the atomic bonds. There inelastic deformation 

is a result of boundary sliding and of dislocation movements and production, at higher 

temperatures together with diffusion. For macro-molecular materials the molecular 

entanglements play a predominant role. In what is now called micro-mechanics the 

problem has to be faced, that the concepts of stress tensor and of temperature from the 

continuum theory are virtually meaningless on the atomic and molecular scale. In so-

called mesoscopic models one tries to mate the continuum concepts with the atomic 

and molecular models. 
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Model for Liquids 

Liquids have properties, which are more or less in between the properties of gases and 

solids. We could characterize a liquid as a material without shape memory, but with a 

perfect volume elasticity. In view of the large stiffness against volume changes the 

internal energy function (48) with a shear modulus put equal to zero ( G  0) gives an 

appropriate description with  e determined by 

              tr tr div dive e     2
3 1 r r                                                                     (50 

 The pressure p  being determined by the internal energy, the stress tensor has the   

same form as for a gas, T I T  p ir ,  and also the constitutive equations (35) and 

(36) do apply. Models for a more complicated behaviour are often denoted as non-

Newtonian fluids. 
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Concluding remarks 

The forgoing derivation of well known equations for models of rigid and deformable 

bodies has been presented for no other purpose than to show how a concise and 

consistent presentation of the theory  of mechanics and continuum thermodynamics is 

possible, without the often undue emphasis laid upon the “laws of Newton” and 

without an unnecessarily elaborate introduction of the thermodynamic aspects. The 

ultimate test of a physical theory is agreement and (even more important) no 

contradictions between observed and simulated data for the object of the theory. The 

development of safe and reliable complex mechanical structures for use on land, at 

sea, in the air and in space, in the amazing technological endeavor of the twentieth 

century, has put the theory to test more than reasonably could be desired. 
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